间只为了方便机器人通行,那么在机器人任务量越来越大之后,规划的效果会越来越差,如果不优化,甚至会出现死锁的情况。对此,WMS系统优化的方法有两种:
一是可以把任务分配和规划路径结合起来,考虑到机器人的当前位置和任务的紧急性、需要花费的时间等等来决定任务分配给哪一个机器人,这样把全局因素都加入算法中进行计算,规划的效果会有很大地提升,但这个方法暂未有比较好的成果。
二是提升调度算法的性能,提升调度算法的性能可以在不增加硬件投入的情况下提升仓库的运营效率,从而创造收益。这个方法的研究比较深入,算法效果也比较好,所以目前企业的WMS系统主流优化方向都是提升调度算法的性能。
从笔者了解的情况来看,目前很多企业已经建成智能仓库,并且部署有完善的WMS系统,但是仍然没有把高效率全局调度多个机器人的智能算法应用于仓库,上文说到调度算法的优化研究比较深入,算法效果也已经比较好,但是为什么没有应用到实际呢?这是因为仿真系统的缺失,当一个算法应用到实际的时候,需要具体适配和验证算法的性能,而由于实体机器人的成本太高经不起试错,所以仿真系统是必不可少的。也就是说,机器人调度算法的研究者首先要构建相应的仓库仿真系统,使用相关企业的历史数据来进行仿真模拟,并且比较使用优化算法前后的仓库效率,测算出优化算法对仓库运营效率的提升程度,最终帮助企业测算出使用优化算法带来的效益,从而使企业更放心地在其WMS系统中集成智能优化算法来指导实际操作。此外,仓库仿真系统有助于算法研究人员研发和测试不同类型的算法,也便于算法研究人员调试算法。可以看到,如果有一个好的仓库仿真系统,无论是研究还是实际应用,都会便利许多。
三、仓库搬运机器人优化调度与仿真前沿
1. 机器人路径规划算法
仓库内机器人的调度也称为多Agent路径规划(Multi-Agent Path Finding, 简称为MAPF),即给定一个图,一些数量的智能体,每一个都有多个任务,每个任务有指定的起点和终点,目标是为每个智能体规划能完成任务而不会碰撞的路径,从而最小化总成本。从问题属性来看,MAPF属于较为复杂的组合优化问题,该问题的状态空间随着问题中智能体的增加而呈指数增长,已被证明为NP-Hard问题。MAPF在物流、军事、安防、无人驾驶、车联网、无人港口等众多领域有着大量的应用场景。
总的来说,MAPF的研究可以分为理论与实践两大方面。先谈理论方面,首先需要先假设时间和地图都是离散化的,这是算法成立的前提条件,其次定义智能体在每一个行动点有两种动作,一种是移动到相邻的位置,一种是在当前位置等待,而且完成动作的耗时是固定的,同时给出智能体碰撞的两种类型:一种叫点冲突,即在任意时刻内,有两个智能体在同一时间达到同一位置;另一种叫边冲突,即两个智能体在同一时间交换彼此的位置。
规划机器人路径时,我们容易想到一些求最短路的算法,如Floyd算法、Dijkstra算法等等,这些算法都是求最优解的,但是规划时并不需要最优,只需要快速求出一个优质的、满足要求的路径规划结果来满足系统的动态性。所以在规划中一般采用A*算法,A*算法是广度优先搜索和Dijkstra算法的结合,是一种启发式算法,它节省了时间的同时牺牲了一点解的质量,即解并不一定为最优解。
A*算法流程如下:(1)定义起点和终点,从起点(初始状态)开始的距离函数g(x),到终点(最终状态)的距离函数h(x),以及每个点的估价函数f(x) = g(x) + h(x)。(2)每次取出一个估价函数f(x)最小的节点x,然后通过x这个节点计算与x相邻的节点的状态。(3)若x的相邻节点中有终点则结束算法,否则重复第二步。需要注意的是,这里的h(x)是我们定义的一个估计函数,在一些条件下是可以灵活定义h(x)来适应要求的,根

下一页 上一页
返回列表
返回首页
©2024 物流律师网—律师法律网|上海物流律师网|上海物流纠纷|上海货运纠纷|上海货运律师|上海货代律师|运输合同|海事海商|上海海事律师|上海海商律师|上海交通事故律师|物流法规|无单放货|海上货物运输合同|海上货运代理合同|租船合同|logistics lawyer|